Solar Radiation Estimation with Neural Network Approach Using Meteorological Data in Indonesia

نویسندگان

  • Meita Rumbayan
  • Ken Nagasaka
چکیده

The objective of this study is to determine the solar energy potential in Indonesia using artificial neural networks (ANNs) approach. In this study, the meteorological data during 2005 to 2009 from 3 cities (Jakarta, Manado, Bengkulu) are used for training the neural networks and the data from 1 city (Makasar) is used for testing the estimated values. The testing data are not used in the training of the network in order to give an indication of the performance of the system at unknown locations. Fifteen combinations of ANN models were developed and evaluated. The multi layer perceptron ANNs model, with 7 inputs variables (average temperature, average relative humidity, average sunshine duration, longitude, latitude, latitude, month of the year) are proposed to estimate the global solar irradiation as output. To evaluate the performance of ANN models, statistical error analyses in terms of mean absolute percentage error (MAPE) are conducted for testing data. The best result of MAPE are found to be 7.4% when 7 neurons were set up in the hidden layer. The result demonstrates the capability of ANN approach to generate the solar radiation estimation in Indonesia using meteorological data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...

متن کامل

Estimating and modeling monthly mean daily global solar radiation on horizontal surfaces using artificial neural networks

In this study, an artificial neural network based model for prediction of solar energy potential in Kerman province in Iran has been developed. Meteorological data of 12 cities for period of 17 years (1997–2013) and solar radiation for five cities around and inside Kerman province from the Iranian Meteorological Office data center were used for the training and testing the network. Meteorologic...

متن کامل

Global Solar Radiation Prediction for Makurdi, Nigeria Using Feed Forward Backward Propagation Neural Network

The optimum design of solar energy systems strongly depends on the accuracy of  solar radiation data. However, the availability of accurate solar radiation data is undermined by the high cost of measuring equipment or non-functional ones. This study developed a feed-forward backpropagation artificial neural network model for prediction of global solar radiation in Makurdi, Nigeria (7.7322  N lo...

متن کامل

ANN Based Modeling for Prediction of Evaporation in Reservoirs (RESEARCH NOTE)

This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back pro...

متن کامل

Estimation of Daily Evaporation Using of Artificial Neural Networks (Case Study; Borujerd Meteorological Station)

Evaporation is one of the most important components of hydrologic cycle.Accurate estimation of this parameter is used for studies such as water balance,irrigation system design, and water resource management. In order to estimate theevaporation, direct measurement methods or physical and empirical models can beused. Using direct methods require installing meteorological stations andinstruments ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013